Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
PLoS Biol ; 20(5): e3001609, 2022 05.
Article in English | MEDLINE | ID: covidwho-1962969

ABSTRACT

Despite the rapid creation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) vaccines, the precise correlates of immunity against severe Coronavirus Disease 2019 (COVID-19) are still unknown. Neutralizing antibodies represent a robust surrogate of protection in early Phase III studies, but vaccines provide protection prior to the evolution of neutralization, vaccines provide protection against variants that evade neutralization, and vaccines continue to provide protection against disease severity in the setting of waning neutralizing titers. Thus, in this study, using an Ad26.CoV2.S dose-down approach in nonhuman primates (NHPs), the role of neutralization, Fc effector function, and T-cell immunity were collectively probed against infection as well as against viral control. While dosing-down minimally impacted neutralizing and binding antibody titers, Fc receptor binding and functional antibody levels were induced in a highly dose-dependent manner. Neutralizing antibody and Fc receptor binding titers, but minimally T cells, were linked to the prevention of transmission. Conversely, Fc receptor binding/function and T cells were linked to antiviral control, with a minimal role for neutralization. These data point to dichotomous roles of neutralization and T-cell function in protection against transmission and disease severity and a continuous role for Fc effector function as a correlate of immunity key to halting and controlling SARS-CoV-2 and emerging variants.


Subject(s)
COVID-19 , Ad26COVS1 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Primates , Receptors, Fc , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
2.
PNAS Nexus ; 1(3): pgac091, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1961140

ABSTRACT

Emergence of SARS-CoV-2 variants and waning of vaccine/infection-induced immunity pose threats to curbing the COVID-19 pandemic. Effective, safe, and convenient booster vaccines are in need. We hypothesized that a variant-modified mucosal booster vaccine might induce local immunity to prevent SARS-CoV-2 infection at the port of entry. The beta-variant is one of the hardest to cross-neutralize. Herein, we assessed the protective efficacy of an intranasal booster composed of beta variant-spike protein S1 with IL-15 and TLR agonists in previously immunized macaques. The macaques were first vaccinated with Wuhan strain S1 with the same adjuvant. A total of 1 year later, negligibly detectable SARS-CoV-2-specific antibody remained. Nevertheless, the booster induced vigorous humoral immunity including serum- and bronchoalveolar lavage (BAL)-IgG, secretory nasal- and BAL-IgA, and neutralizing antibody against the original strain and/or beta variant. Beta-variant S1-specific CD4+ and CD8+ T cell responses were also elicited in PBMC and BAL. Following SARS-CoV-2 beta variant challenge, the vaccinated group demonstrated significant protection against viral replication in the upper and lower respiratory tracts, with almost full protection in the nasal cavity. The fact that one intranasal beta-variant booster administrated 1 year after the first vaccination provoked protective immunity against beta variant infections may inform future SARS-CoV-2 booster design and administration timing.

3.
Sci Adv ; 8(11): eabl6015, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1745843

ABSTRACT

Authorized vaccines against SARS-CoV-2 remain less available in low- and middle-income countries due to insufficient supply, high costs, and storage requirements. Global immunity could still benefit from new vaccines using widely available, safe adjuvants, such as alum and protein subunits, suited to low-cost production in existing manufacturing facilities. Here, a clinical-stage vaccine candidate comprising a SARS-CoV-2 receptor binding domain-hepatitis B surface antigen virus-like particle elicited protective immunity in cynomolgus macaques. Titers of neutralizing antibodies (>104) induced by this candidate were above the range of protection for other licensed vaccines in nonhuman primates. Including CpG 1018 did not significantly improve the immunological responses. Vaccinated animals challenged with SARS-CoV-2 showed reduced median viral loads in bronchoalveolar lavage (~3.4 log10) and nasal mucosa (~2.9 log10) versus sham controls. These data support the potential benefit of this design for a low-cost modular vaccine platform for SARS-CoV-2 and other variants of concern or betacoronaviruses.

4.
NPJ Vaccines ; 6(1): 156, 2021 Dec 20.
Article in English | MEDLINE | ID: covidwho-1585846

ABSTRACT

New generation plasmid DNA vaccines may be a safe, fast and simple emergency vaccine platform for preparedness against emerging viral pathogens. Applying platform optimization strategies, we tested the pre-clinical immunogenicity and protective effect of a candidate DNA plasmid vaccine specific for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The DNA vaccine induced spike-specific binding IgG and neutralizing antibodies in mice, rabbits, and rhesus macaques together with robust Th1 dominant cellular responses in small animals. Intradermal and intramuscular needle-free administration of the DNA vaccine yielded comparable immune responses. In a vaccination-challenge study of rhesus macaques, the vaccine demonstrated protection from viral replication in the lungs following intranasal and intratracheal inoculation with SARS-CoV-2. In conclusion, the candidate plasmid DNA vaccine encoding the SARS-CoV-2 spike protein is immunogenic in different models and confers protection against lung infection in nonhuman primates. Further evaluation of this DNA vaccine candidate in clinical trials is warranted.

5.
Sci Transl Med ; 13(618): eabj2641, 2021 Nov 03.
Article in English | MEDLINE | ID: covidwho-1546435

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that result in increased transmissibility and partial evasion of neutralizing antibodies have recently emerged. Whether natural immunity induced by the original SARS-CoV-2 WA1/2020 strain protects against rechallenge with these SARS-CoV-2 variants remains a critical unresolved question. In this study, we show that natural immunity induced by the WA1/2020 strain leads to partial but incomplete protection against the SARS-CoV-2 variants B.1.1.7 (alpha) and B.1.351 (beta) in rhesus macaques. We challenged rhesus macaques with B.1.1.7 and B.1.351 and showed that infection with these variants resulted in high viral replication in the upper and lower respiratory tract. We then infected rhesus macaques with the WA1/2020 strain and rechallenged them on day 35 with the WA1/2020, B.1.1.7, or B.1.351 variants. Natural immunity to WA1/2020 led to robust protection against rechallenge with WA1/2020 but only partial protection against rechallenge with B.1.351. An intermediate degree of protection was observed in rhesus macaques against rechallenge with B.1.1.7. These data demonstrate partial but incomplete protective efficacy of natural immunity induced by WA1/2020 against SARS-CoV-2 variants of concern. Our findings have important implications for both vaccination and public health strategies in the context of emerging SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Humans , Macaca mulatta , Reinfection
6.
Nature ; 601(7893): 410-414, 2022 01.
Article in English | MEDLINE | ID: covidwho-1521758

ABSTRACT

The CVnCoV (CureVac) mRNA vaccine for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was recently evaluated in a phase 2b/3 efficacy trial in humans1. CV2CoV is a second-generation mRNA vaccine containing non-modified nucleosides but with optimized non-coding regions and enhanced antigen expression. Here we report the results of a head-to-head comparison of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in non-human primates. We immunized 18 cynomolgus macaques with two doses of 12 µg lipid nanoparticle-formulated CVnCoV or CV2CoV or with sham (n = 6 per group). Compared with CVnCoV, CV2CoV induced substantially higher titres of binding and neutralizing antibodies, memory B cell responses and T cell responses as well as more potent neutralizing antibody responses against SARS-CoV-2 variants, including the Delta variant. Moreover, CV2CoV was found to be comparably immunogenic to the BNT162b2 (Pfizer) vaccine in macaques. Although CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded more robust protection with markedly lower viral loads in the upper and lower respiratory tracts. Binding and neutralizing antibody titres were correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of a non-modified mRNA SARS-CoV-2 vaccine in non-human primates.


Subject(s)
COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , Nucleosides/chemistry , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , mRNA Vaccines/genetics , mRNA Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/standards , Female , Macaca fascicularis/immunology , Male , Memory B Cells/immunology , Nucleosides/genetics , Respiratory System/immunology , Respiratory System/virology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Vaccines, Synthetic/standards , Viral Load , mRNA Vaccines/standards
7.
Nature ; 596(7872): 423-427, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279884

ABSTRACT

The emergence of SARS-CoV-2 variants that partially evade neutralizing antibodies poses a threat to the efficacy of current COVID-19 vaccines1,2. The Ad26.COV2.S vaccine expresses a stabilized spike protein from the WA1/2020 strain of SARS-CoV-2, and has recently demonstrated protective efficacy against symptomatic COVID-19 in humans in several geographical regions-including in South Africa, where 95% of sequenced viruses in cases of COVID-19 were the B.1.351 variant3. Here we show that Ad26.COV2.S elicits humoral and cellular immune responses that cross-react with the B.1.351 variant and protects against B.1.351 challenge in rhesus macaques. Ad26.COV2.S induced lower binding and neutralizing antibodies against B.1.351 as compared to WA1/2020, but elicited comparable CD8 and CD4 T cell responses against the WA1/2020, B.1.351, B.1.1.7, P.1 and CAL.20C variants. B.1.351 infection of control rhesus macaques resulted in higher levels of virus replication in bronchoalveolar lavage and nasal swabs than did WA1/2020 infection. Ad26.COV2.S provided robust protection against both WA1/2020 and B.1.351, although we observed higher levels of virus in vaccinated macaques after B.1.351 challenge. These data demonstrate that Ad26.COV2.S provided robust protection against B.1.351 challenge in rhesus macaques. Our findings have important implications for vaccine control of SARS-CoV-2 variants of concern.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/virology , Immunity, Cellular , Immunity, Humoral , Macaca mulatta/immunology , SARS-CoV-2/immunology , Ad26COVS1 , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Bronchoalveolar Lavage Fluid/virology , COVID-19/immunology , COVID-19/pathology , Female , Macaca mulatta/virology , Male , Nose/virology , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , Virus Replication
8.
Cell ; 184(13): 3467-3473.e11, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1252548

ABSTRACT

We previously reported that a single immunization with an adenovirus serotype 26 (Ad26)-vector-based vaccine expressing an optimized SARS-CoV-2 spike (Ad26.COV2.S) protected rhesus macaques against SARS-CoV-2 challenge. To evaluate reduced doses of Ad26.COV2.S, 30 rhesus macaques were immunized once with 1 × 1011, 5 × 1010, 1.125 × 1010, or 2 × 109 viral particles (vp) Ad26.COV2.S or sham and were challenged with SARS-CoV-2. Vaccine doses as low as 2 × 109 vp provided robust protection in bronchoalveolar lavage, whereas doses of 1.125 × 1010 vp were required for protection in nasal swabs. Activated memory B cells and binding or neutralizing antibody titers following vaccination correlated with protective efficacy. At suboptimal vaccine doses, viral breakthrough was observed but did not show enhancement of disease. These data demonstrate that a single immunization with relatively low dose of Ad26.COV2.S effectively protected against SARS-CoV-2 challenge in rhesus macaques, although a higher vaccine dose may be required for protection in the upper respiratory tract.


Subject(s)
Adenoviridae/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Female , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca mulatta , Male , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
9.
JCI Insight ; 6(10)2021 04 28.
Article in English | MEDLINE | ID: covidwho-1206097

ABSTRACT

Effective SARS-CoV-2 vaccines are urgently needed. Although most vaccine strategies have focused on systemic immunization, here we compared the protective efficacy of 2 adjuvanted subunit vaccines with spike protein S1: an intramuscularly primed/boosted vaccine and an intramuscularly primed/intranasally boosted mucosal vaccine in rhesus macaques. The intramuscular-alum-only vaccine induced robust binding and neutralizing antibody and persistent cellular immunity systemically and mucosally, whereas intranasal boosting with nanoparticles, including IL-15 and TLR agonists, elicited weaker T cell and Ab responses but higher dimeric IgA and IFN-α. Nevertheless, following SARS-CoV-2 challenge, neither group showed detectable subgenomic RNA in upper or lower respiratory tracts versus naive controls, indicating full protection against viral replication. Although mucosal and systemic protective mechanisms may differ, results demonstrate both vaccines can protect against respiratory SARS-CoV-2 exposure. In summary, we have demonstrated that the mucosal vaccine was safe after multiple doses and cleared the input virus more efficiently in the nasal cavity and thus may act as a potent complementary reinforcing boost for conventional systemic vaccines to provide overall better protection.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/veterinary , Macaca mulatta/immunology , SARS-CoV-2/immunology , Adaptive Immunity , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/pathology , COVID-19/prevention & control , Humans , Immunity, Cellular , Immunity, Humoral , Vaccines, Subunit/therapeutic use
10.
Nature ; 590(7847): 630-634, 2021 02.
Article in English | MEDLINE | ID: covidwho-960322

ABSTRACT

Recent studies have reported the protective efficacy of both natural1 and vaccine-induced2-7 immunity against challenge with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in rhesus macaques. However, the importance of humoral and cellular immunity for protection against infection with SARS-CoV-2 remains to be determined. Here we show that the adoptive transfer of purified IgG from convalescent rhesus macaques (Macaca mulatta) protects naive recipient macaques against challenge with SARS-CoV-2 in a dose-dependent fashion. Depletion of CD8+ T cells in convalescent macaques partially abrogated the protective efficacy of natural immunity against rechallenge with SARS-CoV-2, which suggests a role for cellular immunity in the context of waning or subprotective antibody titres. These data demonstrate that relatively low antibody titres are sufficient for protection against SARS-CoV-2 in rhesus macaques, and that cellular immune responses may contribute to protection if antibody responses are suboptimal. We also show that higher antibody titres are required for treatment of SARS-CoV-2 infection in macaques. These findings have implications for the development of SARS-CoV-2 vaccines and immune-based therapeutic agents.


Subject(s)
COVID-19/immunology , COVID-19/prevention & control , COVID-19/therapy , Disease Models, Animal , SARS-CoV-2/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , COVID-19/virology , Female , Immunization, Passive , Immunoglobulin G/administration & dosage , Immunoglobulin G/analysis , Immunoglobulin G/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Regression Analysis , Viral Load/immunology , COVID-19 Serotherapy
11.
Science ; 370(6520): 1110-1115, 2020 11 27.
Article in English | MEDLINE | ID: covidwho-840630

ABSTRACT

An urgent global quest for effective therapies to prevent and treat coronavirus disease 2019 (COVID-19) is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987 and REGN10933) that targets nonoverlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques, which may model mild disease, and golden hamsters, which may model more severe disease. We demonstrate that REGN-COV-2 can greatly reduce virus load in the lower and upper airways and decrease virus-induced pathological sequelae when administered prophylactically or therapeutically in rhesus macaques. Similarly, administration in hamsters limits weight loss and decreases lung titers and evidence of pneumonia in the lungs. Our results provide evidence of the therapeutic potential of this antibody cocktail.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing/therapeutic use , COVID-19/therapy , Animals , COVID-19/prevention & control , Drug Combinations , Macaca mulatta , Mesocricetus
SELECTION OF CITATIONS
SEARCH DETAIL